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Transition to ordered intercalated columns in columnar liquid crystals
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Département de Physique, Universite´ de Montréal, Case Postale 6128, Succursale Centre-ville, Montre´al Québec, Canada H3C 3J7
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A phenomenological description of the phase transition between the disordered columnar phaseDhd and the
ordered phaseDho is presented in which the columns are ordered and displaced so as to relieve the intrinsic
frustration on a triangular lattice. A number of additional phases are predicted, including the one observed
experimentally for the hexa-hexylthiotriphenylene columnar liquid crystal.
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Columnar liquid crystal phases were first anticipated@1#
and then observed@2#. The phaseDhd is a two-dimensional
triangular lattice ordering of disordered columns. Hex
hexylthiotriphenylene~HHTT!, a molecule made of a rigid
core with six hydrocarbon chains attached to it, has b
observed for 70,T,93 °C in theDhd phase. On lowering
the temperature, a transition to an ordered phaseDho is ob-
served. In theDho phase, a three-column superlattice stru
ture sets in, with ordering along the columns of both t
positional and orientational degrees of freedom and an in
calation between the columns. Using a phenomenolog
Landau approach, we investigate in this Brief Report
Dhd↔Dho transition, invoking only the positional degrees
freedom. Previous work has focused on transitions from
Dhd phase to a different two-dimensional phase@3#, or in-
volved an in-column ordering without the superlattice stru
ture or assuming a uniform columnar modulation@4#. Experi-
mentally, theDhd↔Dho transition was studied by means
high-resolution x rays@5,6# and is known to also involve the
orientational degrees of freedom, a situation which will
considered in an upcoming paper on the subject.

Without long-range order along the columns, the hig
temperature symmetry groupG0 is not one of the classified
230 crystallographic space groups@7#, but can be identified
@8# as (R^ Z2)∧D6h . The point groupD6h for invertible
hexagons is of order 24, and comprises a total of 12 clas
Primitive direct and reciprocal vectors describing the
plane ordering of theDhd phase may be chosen as
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wherea is the distance between adjacent sites. The low
harmonics expansion of molecular density is
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with the reciprocal vectorsK iP$B1 ,B2 ,2(B11B2)% andc0
and c1 two constants. The resulting triangular lattice is d
picted in the contour plot of Fig. 1.

For a second-order or weakly first-order transition, t
electronic density near the transition point takes the fo
r(x)5r0(x)1dr(x), the density incrementdr(x) trans-
forming according to an~real! irreducible representation~IR!
of G0 . In terms of the basis functions spanning the IR, o
writes dr(x)5( ig if i(x). To identify the possible IR’s of
G0 , a choice is made of a vectork0 from a point of high
symmetry of the Brillouin zone~assuming a transition to a
commensurate phase!. Given the observed structure of th
superlattice@5#, we pick the reciprocal vector

k05 2
3 B11 1

3 B21C[A11C. ~3!

The vectorC5(2p/c)êz provides the modulation along th
columnar direction. The planar componentA1 of k0 was
shown to obey the Lifshitz condition in two dimensions@9#
and it is clear from below that it also obeys Landau’s con
tion. Application of all the 24 elements ofD6h on k0 deter-
mines that the associated little group isGk0

5C3v . The char-

acter table of the~real! IR’s t of Gk0
shows the existence o

two one-dimensional and one two-dimensional IR’s. The s
of k0 comprises three more vectors:

k0* 5$k0 ,2k0 ,k1 ,2k1% ~4!

FIG. 1. Contour plot of theDhd phase, after Eq.~2! ~using c0

53/2,c151!. Lighter regions are of higher density. Also shown a
the Dhd andDho primitive cells and the column numbering.
©2002 The American Physical Society01-1
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with k15A12C. k0* lies in a single plane. Note that th
high-temperature symmetry groupG0 is identical to the one
considered in@3#, but since they investigated a transition to
phase with no order along the columnar direction, the c
tinuousz translation remains unbroken.

Choosing an IRt of C3v , the basis functions are writte
as a productf i5u(k i)Ca(k i), where Ca(k i) are scalar
functions under translations and span a basis oft, while
u(k i) is a linear combination, invariant underGk0

. At this

point, we select the invariant representationt5A1 . In that
case,Ca(k i)51 and the basis functions are

f15(
i 51

3

ei ~Qi1C!•x, f25(
i 51

3

ei ~Qi1C!•x, ~5!

along with their complex conjugates.QiP$A1 ,A2 ,2(A1
1A2)% span the new superlattice withA25(B22B1)/3. The
density increment reads

dr~x!5(
i 51

2

@g if i~x!1c.c.#. ~6!

dr at a given site of the triangular lattice of columns has t
components: an amplitude and a phase representing the
tical position of the maximum ofdr. It is thus expected tha
the phase transition behavior is that of the planar~XY! model
on a triangular lattice. On the other hand, we argue that
the frustrated antiferromagnetic planar model since max
of the density modulation on the three columns of a trian
lar plaquette may not be admitted at the samez value. A
period c along thez axis is imposed. Hence, for the thre
dimensional systems considered here, the analogy woul
with a ferromagnetic stacking of the antiferromagnetic pla
model on triangular layers.

Expanding the free energyF to fourth order, the following
three invariants are generated:

F5a~ ug1u21ug2u2!1
b1

4
~ ug1u41ug2u4!

1
b2

2
~ ug1u2ug2u2!. ~7!

FIG. 2. Fourth-order phase diagram in theb1-b2 plane, show-
ing the two possible phases 1 and 2. The hatched region ha
stable phase.
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a, b1 , andb2 are phenomenological coefficients. The for
of the effectively two-dimensional free energy~7! has been
known to arise from theC4v image group@10#. From mini-
mizing Eq. ~7! for a,0 ~i.e., T,Tc!, two possible phases
arise as shown in Fig. 2.

Phase 1 hasug1u50 and ug2u5A2a/b1 or ug2u50 and
ug1u5A2a/b1. For both cases, withg i5ug i ueiw i ( i 51,2),
the various values ofw i correspond to equivalent densit
increments, shifted in the coordinate system along thez axis.
After picking w i50, one has nearTc,

dr~x!52A2a/b1(
i 51

3

cos@~Qi6C!•x#. ~8!

The two degenerate phases@6 from the signs in Eq.~8!# are
related by an inversion in a plane perpendicular to thez axis
and by rotations of6p/3 and p around thez axis. Their
structure is of periodc along thez axis. They are also invari-
ant under translation by a superlattice vector of the fo
n1a11n2a2 with n1 , n2 integers anda15b11b2 and a2
52b22b1 the primitive vectors forming the basis for th
superlattice~Fig. 1!. Overall, it is verified that the phases
given by Eq.~8! are invariant over the symmetry operatio
of the space group 166: (D3d

5 ). Physically, the modulations
of columns 0, 1, and 2~as shown in Fig. 1! in phase 1~1!
are shifted alongz by 0, c/3, and 2c/3, respectively~see
Fig. 3!.

Phases 1 are breaking a discrete chiral symmetry in a
tion to the continuous translation symmetry in the column
direction. Indeed, let us label every corner of the triangles
the basal plane by the smallest displacement~positive or

no

FIG. 3. Density profile r(x) for phase 1, shown forz
50, c/3, 2c/3.
1-2



o
ed

th
re
n
li

he

la

-
i

as

i-

d 2.
0

ous
is-
ra-
nto
ion
he
d
n-
is-
rro-
red
ility
r-
are
tite
rved
-
h-
a
is

red

94:
2

tes
all

e
his
anar
ase

in

ing
l

t

BRIEF REPORTS PHYSICAL REVIEW E 65 062701
negative! of their column in the columnar direction. Tw
sequences are then possible when the triangle is travers
a clockwise direction: (0,1c/3,2c/3) and (0,2c/3,
1c/3). The two phases, characterized by6C in Eq. ~8!,
belong to two topologically distinct classes of patterns of
above sequences. Global translation in the columnar di
tion preserves these distinct classes. Under the above co
tions, our system belongs to the same chiral universa
class as the three-dimensional ferromagnetic stacking
antiferromagnetic planar spins on triangular layers.

In phase 2,ug1u5ug2u and in terms ofwd5w22w1 and
wm5 1

2 (w11w2) the density increment becomes

dr~x!54A2a/~b11b2!cos~C•x2 1
2 wd!

3(
i 51

3

cos~Qi•x2wm!. ~9!

Clearly,wd represents the freedom of arbitrarily moving t
density along thez axis. Arbitrary values ofwm , however, do
not in general yield equivalent densities. In-plane trans
tions by vectorsn1b11n2b2 ~n1 ,n2 integers! are used to
relate densities withwm’s differing by 62p/3, and rotations
around thez axis by 6p/3 connect densities withwm↔wm
1p. Thus, the space of degeneratedr~x! can be specified in
the rangewmP@0,p/6#. To determine the stable configura
tions, the Landau free energy is expanded to sixth order w
the addition of the following terms:

F65
b3

6
~ ug1u61ug2u6!1

b4

6
~g1

3g2
31g1*

3g2*
3!

1
b5

6
@ ug1u2ug2u2~ ug1u21ug2u2!#. ~10!

In Eq. ~10!, only the second term depends on the ph
angles and it is rewritten as (b4/6)ug1u3ug2u3 cos 6wm. We
note that this term is absent in theC4v model. The condition
]F/]wm50 imposes thatwm5np/6 wheren is an integer.
Two situations are then possible, depending on the sign
b4 .

For b4,0, wm52np/6 gives the stable phase 2A, invar
ant under the space group 191: (D6h

1 ). In Fig. 4, the con-

FIG. 4. Contour plot for densityr(x) in phase 2A, depicted a
z50 andc/2.
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tour plots of the total densityr~x! ~for n50! show a shift of
c/2 in occupancy between columns 0 and columns 1 an
The amount of density modulation is larger in columns
than for columns 1 and 2. Phase 2A breaks the continu
translation symmetry in the columnar direction but no d
crete chiral symmetry is present in that case. All configu
tions belong to a single class of patterns convertible i
each other by a global translation in the columnar direct
combined with a lattice translation in the basal plane. T
totally frustrated tripartite triangular lattice is transforme
into a bipartite unfrustrated honeycomb lattice with the ce
ters of the honeycombs forming a triangular lattice in a d
placed plane. This phase is not predicted for the antife
magnetic planar model on a triangular lattice. It is rende
possible in our model since there exists here the possib
of having modulations of different amplitudes on neighbo
ing columns. The phase transition and critical properties
those of an antiferromagnetic planar model on a bipar
lattice. Phase 2A is the ordered columnar structure obse
experimentally for HHTT@5#, at least for the positional de
grees of freedom. The transformation of the hig
temperature fully frustrated tripartite triangular lattice into
low-temperature bipartite unfrustrated honeycomb lattice
sufficient to drive the system to a stable intercalated orde
columnar structure.

For b4.0, phase 2B is obtained withwm5(2n11)p/6.
The resulting density is shown in Fig. 5~for n51!. The
corresponding space group symmetry of this phase is 1
(D6h

4 ). It can be seen that in phase 2B columns 1 and
alternate in occupancy with their maxima separated byc/2,
with no ordering in column 0. All degenerate ground sta
of phase 2B belong to one class of columnar patterns,
breaking the continuous translation symmetry along thz
axis. No additional discrete chiral symmetry is present. T
phase corresponds to a partially ordered phase of the pl
model. Again, frustration drives the system to ordered ph
with one-third of the columns remaining disordered.

An interesting topology emerges for the phase diagram
theT-b1-b4 space, for a givenb2 . For b1,b2 , two sheets
of critical points extend, respectively, in the two regionsb4
,0 andb4.0. The line of critical points atb450 andb1
,b2 borders a sheet of first-order transitions connect
phases 2A and 2B belowTc . These two sheets of critica

FIG. 5. Contour plot for densityr(x) in phase 2B, shown atz
50 andc/2.
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points belong to the nonchiral antiferromagnetic plan
model (n52) universality class in three dimensions.

For b1.b2 , a single sheet of critical points exists, a
belonging to the chiral antiferromagnetic planar modeln
52) universality class in three dimensions. AtT5Tc , b1
5b2 , and b450, a multicritical point emerges where th
a

ia

06270
rtwo sets of sheets pinch the line of second-order transiti
bordering the sheet of first-order transitions belowTc and
b15b2 .
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